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Physiological systems generate complex fluctuations in their output signals that reflect the underlying dy-
namics. The base-scale entropy method was proposed as a complexity measure to investigate the complexity of
time series. The advantages of this method are simplicity and extremely fast calculation for very short data sets.
This method enables analyzing very short, nonstationary, and noisy data sets. We employed this method for
short-term physiological time series for analysis of heart-rate variability signals. The results show that the
simple and easily calculated measure can effectively detect the complexity dissimilarity of physiological time
series in different physiological or pathological states, which is convenient for clinical applications.
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I. INTRODUCTION

Dynamic complexity detection for outputting time series
of complex systems is one of the most important problems in
physics, biomedicine, engineering, and economic sciences.
Especially in biomedicine, accurate detection of the dissimi-
larity between normal and abnormal states may improve di-
agnosis and treatment and also provide convenience for
clinical applications.

Many ingenious algorithms and methods have been devel-
oped during the last 20 years in order to estimate complexity
measures from real-world time series, such as dimensions
and Lypunov exponents �1–5�. They are both working well,
but they generally require long data sets for statistically sig-
nificant results, which results in inconvenience in clinical
studies and applications. Another main type of complexity
measures is the entropy. Entropy has the advantages of sim-
plicity, extremely fast calculation, and antinoise ability. They
provide convenience for detecting and capturing useful infor-
mation of time series �6–13�. Some entropy methods based
on symbolic dynamics adopt a range partition to generate a
partition in the symbolization transform, but these meaning-
ful results may be compromised by the nonstationarity of the
time series �14�. Steuer et al. �15� reported that a partition
according to the principle of maximized entropy gave a bet-
ter tool to differentiate sequences than the usually used ho-
mogeneous partition. For the well-known chaotic dynamic
systems, logistic maps, the T entropy values introduced by
Ebeling et al. �16� approach the Lyapunov exponent asymp-
totically for increasing string length. From their work we got
the idea that the entropy measure should play an important
role if we use a much more reasonable partition method. The
data sets obtained from most clinical and physiological stud-
ies usually are nonstationary, rather short, and noisy, such as
heart-rate variability �HRV� signals. Our objective was to
find an effective method that requires very short data sets for
statistically significant results, provides the ability to make

fast calculations, and can be used to analyze nonstationary
and noisy data, which is convenient for the analysis of real-
world time series.

II. THEORY

We consider a time series u of N points as follows:
�u�i� ,1� i�N�. First we embed the time series in an
m-dimensional space �17�. For every point u�i�, we selected
m data points from the series to make an m-dimensional
vector

X�i� = �u�i�,u�i + L�, . . . ,u�i + �m − 1�L�� , �1�

where m is the embedding dimension and L the delay time.
Choosing L=1, the number of m-dimensional vectors is N
−m+1 in this paper. For each m-dimensional vector, the base
scale �ZBS� is calculated by defining the base scale as the root
mean square of the differences between every two contigu-
ous data points in an m-dimensional vector,

ZBS�i� =��
j=1

m−1

�u�i + j� − u�i + j − 1��2/�m − 1� . �2�

Based on the base scale, the partition standard can be
selected as a�ZBS. We transformed each m-dimensional
vector X�i� into a symbolic sequence Si(X�i�)= �s�i� ,s�i
+1� , . . . ,s�i+m−1��, s�A, on the basis of the alphabet A
�A=0,1 ,2 ,3�. The transformation into symbols refers to four
given levels:

Si�X�i�� =	
ū � ui+k � ū + a � ZBS, 0,

ui+k � ū + a � ZBS, 1,

ū − a � ZBS � ui+k � ū, 2,

ui+k � ū − a � ZBS, 3,

 �3�

where i=1,2 ,3 , . . . ,N−m+1, k=0,1 ,2 , . . . ,m−1. ū denotes
the mean of the ith m-dimensional vector X�i�, and ZBS de-
notes the base scale of the ith m-dimensional vector X�i�.
The symbols 0, 1, 2, and 3 are only used as a mark for every*Email address: xbning@nju.edu.cn
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region; the values have no practical meaning. a is a special
parameter. If a is too large during the course of transforming
the original time series into symbolic time series, the detailed
information will be lost and the dynamic information cannot
be captured. Too small of a value of a will result in salient
influence from noise. In this paper, we obtain the a value by
testing the method used by Wessel et al. �13�.

We studied the probability distribution about the symbolic
sequences Si of the m-dimensional vector X�i� in order to
calculate the base-scale entropy. The symbolic sequences
Si �m-words� at most have 4m different forms � since they
are made up of four symbols, 0, 1, 2, and 3. For each �, we
determine the relative frequency

p��� = No.�t�1 � t � N − m + 1 �ut, . . . ,ut+m−1� has form ��/

�N − m + 1� . �4�

The base-scale entropy of the m-dimensional vector is de-
fined as

H�m� = − � P���log2P��� , �5�

where the value of m=3, 4, 5, 6, 7, which seems to be suit-
able for calculating convenience, and it is also reasonable
that N is larger than 4m. The sum is for all forms �. This is
the wave information contained in m consecutive values of
the time series. It is clear that 0�H�m�� log24m, where the
lower bound is attained for a series that presents only one
form among 4m possible forms, and the upper bound for a
completely random series where all 4m possible forms appear
with the same probability. The time series presents many
types of dynamic forms when H�m�� log24m.

The base-scale entropy method essentially quantifies the
uncertainty of the occurrence of m-words form �. The larger
entropy denotes the more uncertain occurrence of m-words
form �. We use the word “complexity” to denote the uncer-
tainty. The greater complexity denotes the larger uncertainty,
and vice versa. This method is completely different from
other symbol dynamic methods in the transformation of sym-
bols. Since the base scale of each m-dimensional vector is
different, the standard of partitioning is also changed dy-
namically. We used a dynamical adaptive partitioning ap-
proach in transforming the time series into a symbol series.
The base-scale entropy method proposes using the base scale
in symbol transformation as a renormalization of the delay
vectors, which leads to an equal coding form of similar wave
forms by rescaling the amplitude as illustrated in Fig. 1. The
purpose is to extract the wave characteristics of the time
series and ignore amplitude information. In Fig. 1, X�i� and
X�j� are five-dimensional vectors. Their wave modes are
similar. Transformed into symbols, the two m-words are all
23131 though they have different wave amplitude and mean.
It is possible using this method to analyze nonstationary time
series. To further explain this nomenclature, we discuss the
relation between the base scale and standard deviation. From
Eq. �2�

ZBS�i� =��
j=1

m−1

�u�i + j� − u�i + j − 1��2/�m − 1�

= �E�ui+1 − ui�2.

When the series is a stochastic sequence and its mean is 0,
the ZBS�i� is given by

ZBS�i��stochastic = �E�ui+1 − ui�2

=�E�ui+1
2 + ui

2 − 2ui+1ui�

=�E�ui+1
2 � + E�ui

2�

=�2 � �i�stochastic, �6�

� is the standard deviation of the series. We can see that the
base scale changes with the standard deviation. A statistical
property such as mean or standard deviation does not remain
the same throughout the time recording for a nonstationary
time series. The base-scale entropy method, which used a
dynamic adaptive partition to investigate the complexity of
time series, can also be applied to analyze nonstationary
data.

III. BASE-SCALE ENTROPY APPLIED TO MODEL
SYSTEMS

Using a logistic map given by xi+1=rxi�1−xi�, where r is
the control parameter, we generated the time series x�r� of
the logistic map by starting from x0=0.65, r0=3.4 and con-
tinuously increased r in steps of 10−4. Figure 2�a� shows the
resulting time series. The vertical dashed lines indicate the
bifurcations and periodic windows. Figure 2�b� shows the
base-scale entropy of the logistic map. We used m=6,
N=9000,a=2.0 for calculating the entropy value. We tested
several values of a from 0.1 to 2, and the results showed no
significant difference. The parameter m=4,5 ,6 ,7 also had
little influence on the results. Figure 2�c� shows the
Lyapunov exponent of the logistic map. It is clear that Figs.
2�b� and 2�c� have a very similar appearance in the whole
chaotic regions and both show the transformation of dynamic
complexity very well. This result also resembles that ob-
tained with the permutation entropy �18�. The different ap-
pearance within the periodic region r�3.57 shows that the
base-scale entropy quantifies the periodic series better than
the Lyapunov exponent does.

FIG. 1. Illustration of similar wave mode.
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The base-scale entropy method is effective in the presence
of noise. In theory, to avoid a significant influence from noise
in a base-scale entropy calculation, the partition standard a
�ZBS should be chosen larger than most of the noise �10�.
We input stochastic Gaussian noise of standard deviation s
=0.000 25 and s=0.1, then calculated the base-scale entropy
of the logistic map. The results are shown in Fig. 2�d�. From
this we can see that the entropy also can capture all the
bifurcation points except that the noise causes a small in-
crease of entropy value in the periodic region �3.4�r
�3.57�. In the chaotic region �3.57�r�4� the entropy re-
mains the same for s�0.1. So a small noise does not change
the complexity of a chaotic signal using this method.

To further quantify the calculated results, we compared
the entropy value of the logistic map with the one of stochas-
tic white noise. For periodic, chaotic, and stochastic series,
the base-scale entropy is markedly different. It is interesting
that the complexities of these series are clearly different.
Stochastic white noise has the largest entropy value and
complexity. Contrarily the periodic series have the smallest
ones. The Lorenz chaotic system was also investigated
�19,20�. It also showed that the base-scale entropy captures
the dynamic changes and periodic behavior very well.

IV. APPLIED BASE-SCALE ENTROPY TO HRV SIGNALS

Heart-rate variability is the alteration in consecutive
heartbeat intervals. HRV series hide a great deal of dynamic
information that is related to potential mechanisms of a
physiological system. Detecting and analyzing the hidden
dynamical information may improve diagnosis and treatment
and provide convenience for clinical applications.

We used m=4, N=500, a=0.1 to calculate the base-scale
entropy; then we tested several values of a from 0.1 to 0.4,
and the results had no significant difference. m=3,4 ,5 also
had little influence on the results. Using m=3, even 200 data
points are sufficient. We calculated the base-scale entropy for
five healthy young subjects �age 27.80±4.87�, five healthy
old subjects �age 76.00±3.32�, and 21 subjects with conges-
tive heart failure �CHF� �age 61.14±6.92�. All data sets are
derived from the Fantabase Database and the Congestive
Heart Failure RR Interval Database in the Physionet Data-
base �21�. In Fig. 3�a� the result shows that the three groups
can be classified completely by their base-scale entropies,
through the t test, p�0.05. The base-scale entropy of the
healthy young group denotes the optimal physiological state.
The base-scale entropy of the healthy old group represents a
slight deviation from the optimal youthful state due to the
decoupling of components in the integrative control system
with aging. Severe damage to the control system is repre-
sented by the CHF group. These individuals have profound
abnormalities in cardiac function associated with pathologi-
cal alterations in both the sympathetic and the parasympa-
thetic control mechanisms that regulate beat-to-beat variabil-
ity, so the base-scale entropy of the CHF group represents a
big deviation from the optimal youthful state.

The harmonious physiological mechanisms have some de-
gree of change in the aging and pathological states, which
make their HRV series have a higher complexity. From
short-term HRV signals, the base-scale entropy method sen-
sitively identifies patterns generated from healthy and patho-
logical states, as well as aging. In total, this method is fea-
sible and effective for HRV data classification.

To further investigate the detailed information, we
counted the “forbidden form” in the distribution of 4m differ-
ent forms � for three groups. The results for healthy young
subjects are 228.2±6.8, healthy old subjects are 213.6±3.9,
and congestive heart failure subjects are 147.5±12.1. The
three groups also can be classified completely by their for-

FIG. 2. �a� Logistic map for varying parameter r. �b� The nor-
malized base-scale entropy for the logistic map. �c� The Lyapunov
exponent 	 for the logistic map. �d� The normalized base-scale
entropy with Gaussian noise at standard deviations s=0.000 25
�thin line� and 0.1 �thick line�.

FIG. 3. �a� The comparative results of base-scale entropy for
three groups. �b� The comparative results of ApEn and SampEn
�thick line� for three groups. �a�, �b� Values are given as mean ±
standard deviation. Young ���, elderly ���, and CHF �*�.
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bidden form. A small number of forbidden form denotes a
rather uncertain occurrence of the m-word form. For ex-
ample, the m-word forms of higher probability distribution
are given as �1200�, �1332�, �3120�, and �3312� for the
healthy subjects and the probability distribution of these
forms is at least 55% in all. For different subjects in the CHF
group the m-word forms of higher probability distribution
are different.

Figure 3�b� shows the calculated results of ApEn and
SampEn for three groups. ApEn describes the rate of produc-
ing new information �10�. We use m=2, r=0.2�, N=500 to
calculate ApEn and SampEn. The three groups cannot be
identified by their calculated result of ApEn and SampEn,
through the t test, p�0.05. The causes may be the following.
�i� To calculate ApEn and SampEn, one has to fix the value
of a parameter that depends on the time series �. Therefore,
the results may be significantly affected by nonstationarity of
the physiological time series. �ii� The series length 500 is too
small to obtain a reliable convergence value. �iii� The dimen-
sion m=2 is too small to sensitively describe the difference
of different physiological or pathological states.

V. CONCLUSION

The data sets obtained from most clinical and physiologi-
cal studies usually are nonstationary, relatively short, and
noisy. In our paper, we introduce the base-scale entropy as a
complexity measure of time series to analyze short-term
HRV series. For HRV series of 500 data points, the base-
scale entropy sensitively shows the complexity dissimilarity
among different physiological and pathological states, which
is convenient for clinical applications.

The advantages of our method are simplicity and ex-
tremely fast calculation for very short data sets. This method
enables us to analyze very short, nonstationary, and noisy
data series, so the base-scale entropy can be directly applied
to real-world time series.
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